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Frustration effects in quasicrystals: an exactly soluble example 
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Abstract. Frustration effects due to competing interactions between magnetic atoms in 
quasicrystals are studied in an exactly soluble example: the lsing chain in a quasiperiodic 
two-valued magnetic field. At zero temperature the model exhibits an infinity of pure 
phases, characterised by a modulation of the order parameter which reflects the aperiodic 
structure of the system, up to a larger and larger length scale. 

1. Introduction 

Since the experimental discovery by Shechtman et a1 [ 13 of icosahedral symmetry 
associated with long-range order in Al-Mn alloys, there has been a growing interest 
in this new quasicrystalline state of matter [2]. Among the structural models that have 
been proposed to describe these phases, the most appealing one is certainly the strip 
method [3-51. This algorithm generates quasiperiodic tilings of Euclidean space by 
projection from a regular lattice in a higher-dimensional space. Up to now, physicists 
have mainly focused their attention on the structural properties of quasicrystals (posi- 
tion of atoms, topology of defects, etc). The systematic study of their physical properties 
is still in its earliest stages. 

In this paper, we aim to emphasise that the lack of periodicity of quasicrystals may 
have spectacular consequences for their magnetic properties, as soon as some frustration 
is present. A system is frustrated if some of its interactions are in competition, such 
that there exists no ground state which satisfies all of them [6]. Since the geometry 
of quasicrystals exhibits some structure at every length scale, their magnetic phase 
diagram may correlatively be expected to have a very rich content. 

We shall illustrate these general considerations by solving a simple one-dimensional 
example of a frustrated quasicrystal: a ferromagnetic Ising chain in a quasiperiodic 
two-valued magnetic field. Section 2 describes the model, and presents some general 
formalism, which we have already used in the study of harmonic excitations (phonons) 
on the same geometrical structure, in collaboration with Petritis [7]. Section 3 is 
devoted to an analytic solution of the model at zero temperature. The outcome is quite 
remarkable: besides the two expected ordered phases, the system exhibits two infinite 
sequences of other pure phases. Each of these phases, labelled by an integer (L) or 
( - L ) ,  is characterised by a non-trivial total magnetisation, due to a spatial modulation 
of the order parameter. This pattern reflects the quasiperiodicity of the system up to 
a maximal scale, which diverges as the label ( L )  or (-L) of the phase becomes larger. 
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2. The model 

The geometrical model of a one-dimensional quasicrystal we have chosen to consider 
is generated by the well known projection method [3-51. The line D to be tiled is 
drawn in the Euclidean plane, contains the origin 0 and makes an angle 8(0 < 8 < 7r/4) 
with the x axis. Consider the strip swept by shifting the unit square (-1 < x S 0; -1 < 
y S 0) along D. If we project orthogonally onto D all points of the strip with integer 
coordinates, we obtain a quasiperiodic tiling of the real line with two types of segments, 
namely short and  long ones, of length s = sin 8 and c = cos 8, respectively (see figure 
1). Throughout the following, 8 assumes the value 8, such that tan Or = T-’ = T - 1, 
where T = (fi+ 1)/2 is the golden mean. This particular choice has two advantages: 
T is the irrational number which is ‘the worst approximated by rationals’, and hence 
the value for which the effects of aperiodicity can be expected to be the most important. 
Moreover, the directions along which the six-dimensional hypercubic lattice has to be 
projected in order to get a three-dimensional tiling with icosahedral symmetry also 
involve the golden mean [3-51. We expect that the essential features of our model 
remain qualitatively the same for any irrational value of tan 8 with typical Diophantine 
properties. 

The magnetic model we aim to study is defined by putting two types of atoms on 
the bonds of D, according to their length, i.e. c atoms on long bonds and s atoms on 
short ones. Each atom has spin ;(g, = * l )  and nearest-neighbour couplings of unit 
strength ( J  = l ) ,  irrespective of its type. Moreover, each spin on feels a localjeld h,, 
which depends only on its type ( c  or s). The Hamiltonian of the model is therefore 

~ = - X C C T , G + l - C h n %  (1) 
n n 

where h,  = h, or h,, according to the length of the nth bond of D (see figure 2). The 

. . -  

Figure 1.  Construction of a quasiperiodic tiling of the line by the strip method 

hc 1 1.  . -. . . . . - - 1 
w : s  c 5 C C 5 

Figure 2. Definition of the almost periodic magnetic fields h, ,  in connection with the word 
W coding the geometry of the model. 
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two values h, and h,  of the quasiperiodic magnetic field are the basic parameters of 
the model. Its thermodynamical properties are clearly invariant under a global change 
of sign of the field: ( h , ;  h , )  + ( - b , ;  - h 5 ) .  The model is frustrated if h,  and h, have 
different signs, i.e. h, < 0 < h ,  or vice versa. 

The implementation of a transfer matrix formalism for the present model is very 
easy. Our presentation will closely follow the lines of our previous work [ 7 ]  on the 
phonon spectrum of the very same structure. We shall recall some useful results on 
the geometry of the model, referring the reader to our previous publication for a 
detailed derivation. Consider the infinite word W = scscc . . . built by the succession 
of long and short segments of the tiling, starting from the origin (see figure 2 ) .  W is 
the limit of a sequence offinite words W L ,  which obey a three-term recursion relation 

WL = WL-,  WL-2 

WL = WL-2 WL-1 L odd ( 2 0 )  

w-,=s WO = c. (26)  

L even 

together with the initial conditions 

The finite word WL is the basic cell of the periodic tiling of D generated by the projection 
algorithm, if the angle O L  between D and  the x axis is such that 

(3) 

where the rational t L  is the Lth principal convergent of the reciprocal golden mean 
T . The integers F L  are the well known Fibonacci numbers, defined by the recursion 

tan O L  = t L  = FL/  F L + l  

- 1  

( L Z l )  

FL = F L - 1  i- F L - 2  (4a 1 
and the initial values 

F- ,  = 1 Fo = 0. (4b)  

This sequence of numbers plays an  important role in the following; we have in particular 
made use of numerous identities among them, which can all be easily derived from 
their simple expression in terms of 7: 

FL = [ T L - ( - T ) - L ] / & .  ( 5 )  

Note that the length of WL is F L t 2 .  

(1) at temperature p-’ .  This quantity is simply given by 
We are interested in the free energy f ( P )  of the model defined by the Hamiltonian 

f = - p - ’  V - X  lim ( N - l  In Tr T (  N ) )  ( 6 )  

where T (  N )  is the product of N elementary transfer matrices M ( h , )  

The numbers h, are equal to h,  or h,, according to the value of the nth letter of the 
infinite word W. The 2 x 2  matrix M ( h )  is 
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Owing to the properties of the approximants f L ,  the free energy f ( P )  can also be 
evaluated through 

f =  lim fL (9a)  

f L  = - (pFL+2)- '  In Tr (eL (9b) 

L-02 

where (eL is the product of the FLt2 matrices M ( h )  associated with the FL+, letters of 
the word WL. Moreover fL has a simple interpretation: it is the free energy of the 
periodic model defined by the angle OL (see equation (3)). The matrices (eL obey by 
definition the recursion relation (2a), with the factors in the opposite order, since 
matrix products are conventionally read from right to left ( L a  1) 

(er = (eL- l (eL-2  L odd 

( e L  = (eL-z(eL-1 L even 

together with the initial conditions 

%-, = M ( h , )  (eo = M (  hc). 
This last property can easily be shown to imply that the traces xL and determinants 

y ,  of (eL obey the following recursion: 

X L  = X L - I X L - 2  - X L - 3 Y L - 2  L 3 2  

Y L  = Y L - I Y L - 2  L a 1  

while the initial conditions ( lob )  are now 
x - ,  = 2 ea cosh(ph,) 

xo = 2 ea cosh(&) 

x ,  =2e2@ cosh[P(h,+ h,)]+2e-2P cosh[p(h,-h,)] 

y - ,  = yo = 2 sinh(2P). 

(1 lb )  

The recursion (1 l a )  generalises to arbitrary 2 x 2 matrices the mapping introduced 
by several authors [8-121 in the case of matrices with determinant unity, which was 
the starting point of a renormalisation group analysis of Schrodinger equations with 
quasiperiodic potentials. We have also made use of this mapping in [7] in order to 
study the low-frequency behaviour of the phonon model. 

The recursion relations (1 1 a )  and the initial conditions (1 1 b) allow one to determine 
the free energy of the model through the simple formula (see equation (96)) 

f =  -/3-' lim F i i 2  In xL 
L-m 0 

which can indeed be used to compute f (P)  numerically at finite temperature. The 
zero-temperature limit is a more subtle point, to be discussed in the next section. 

3. Exact solution at zero temperature 

In this section, we derive an exact expression of the ground-state energy Eo of the 
model, which is by definition 
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The mapping (1 l a )  acting on the traces and determinants of qL contains a minus sign, 
and hence involves huge compensations at low temperature ( p  + a), where x L  and yL 
become large. It is therefore preferable to go back to the matrix equations (10). Let 
us first remark that the free energy f (P)  depends on the matrices gL only through 
their invariants xL and y,, and hence remains unchanged if we forget about the ordering 
prescription ( l o a )  and always put %,-, at the left of %L-2, say. From a geometrical 
point of view, this modification amounts to performing a cyclic permutation of letters 
on each finite word WL, which leaves the quantity f L  invariant. 

In order to obtain the ground-state energy Eo of the model, it is sufficient to follow 
the leading behaviour as p +CO of each entry of the matrix (eL (see, for instance, [13]). 
The exponents a L ,  . . . , d, such that 

I exp(paL) exp(PbL) 
P- exp(pcL) exp(PdL) 

%L - [ 
obey the following recursion: 

aL = Sup( aL-l + aLw2; bL-l + c L P 2 )  
bL = Sup(aL-l + bLw2; bL-l + dL-2) 

cL = S U P ( C ~ - ~  + + c ~ - ~ )  
dL = SUP(  CL-^+ b L - 2 ;  dL-l+ dL-2) 

and the initial conditions ( l o b )  imply 
= -kI = 1 + h, d-, = - c - ~  = 1 - h, 

QO= -bo= 1 + h,  do=  -CO= 1 - h, .  
The ground-state energy is then given by 

Eo = - lim [ FLi2 S u p ( a ~ ;  dL)l (16) 
L-PW 

where Sup denotes the larger of its two arguments. 
Let us first illustrate how this formalism works in the simple case where both 

magnetic fields h, and h,  are positive. Under these conditions, it is easy to realise that 
aL is larger than dL, and that a, obey the very same three-term recursion relation (4a) 
as the Fibonacci numbers. Since FL+I and F L + ~  form a basis of the solutions of equation 
(4a), there exist two constants a, p such that 

a~ = ~ F L + ?  + PFL+ i 

Eo= - ( a  + P T - ’ ) .  

( 1 7 0 )  

(17b) 

The ground-state energy then becomes 

In the present case ( h ,  and h, positive), the initial conditions (15b) fix a = 1 + h, 

E:’ = - (1 + ~ - ‘ h , +  ~ - * h , )  (h,>O; h,>O). (18)  
This is indeed the expected expression for the ground state of a fully ordered phase 

(a, = + l ) ,  since atoms of types c and s have densities 7 - l  and T - ~ ,  respectively. In 
other words, the zero-temperature magnetisation 

and p = h, -  h ,  and yield 

is identically equal to + 1  in this phase. 
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Let us now turn to the interesting case where h ,  and h,  have different signs, and 
lead to a frustrated model. We shall present the results for h,  < 0 < h , .  The main idea 
is that the quantities Sup( aL;  d L )  still obey the recursion relation (4a)  for large enough 
L, and hence the ground-state energy is still given by (17b) ,  where CY and p are two 
functions of h,  and h, to be determined. 

The study of the recursion ( 1 5 )  involves many inequalities and it would be tedious 
to translate it into words. We prefer to summarise it in a flow chart (figure 3), where 
the comparisons implied by (15a) are represented by tests. At each new value of the 
iteration label L, four new regions of the parameter plane ( h , ;  h , )  arise: two of them 
join the totally ordered (+) or ( - )  phases, denoted ( 1 )  and ( - l ) ,  respectively, while 
a third region builds a new pure phase, labelled ( L +  l ) ,  and the fourth and last region 
remains undecidable and needs at least one more iteration. 

The phase diagram of our model is hence as follows: besides two totally ordered 
phases, denoted (1) and ( - 1 ) ,  there exist an infinity of other pure phases, denoted ( L ) ,  
and their transforms under ( h , ;  h,)  + ( -h,;  - h c ) ,  denoted ( - L ) .  The end of this section 
is devoted to a quantitative study of these phases. 

For the pure phase ( L ) ,  the quantities 

s‘,)= Sup(aN; d N )  (20) 

obey the recursion (4a) for N 2 L. SLY2 assumes the same value as in one of the 
totally ordered phases, namely ( 1 )  for even L and ( - 1 )  for odd L (see figure 3, left) 

Sr12 = FL + ( - 1 )  L - l ( F L - l h c +  FL-’h,). 

SLYl is a slightly more delicate quantity; it is shown by inspection to obey a linear 
recursion between two consecutive pure phases 

(21b)  S ‘ L ’  - s ( L - l ) + s ( L - l )  

After solving this last equation, we determine the ground-state energy by means of 
(17 b ) .  Our final result is ( L  3 2) 

L-1 - L - 2  L - 3  . 

E r ’  = -1 4- ( f l h c +  ~ - ’ h , )  + 2( 7-’FL - F L - l )  

x [ FL-lhc+ FL-,h,+ ( - l ) L ( h ,  - h, -2)]. (22) 
This rather lengthy expression contains all information of physical interest. The 

boundary between phases ( L )  and ( L -  1 )  is a part of the line defined by the equation 

(23) 
Figure 4 shows the complete phase diagram of the model. As the label L is increased, 
the phases ( L )  become smaller and smaller, and accumulate onto a limit point 

( L 2 3 )  

FL-3hc+ FL-4ha + (-1) L ( h , -  h,-  2)  = 0. 

n:(hs=27-I;  h,= -27-2). (24) 

The whole diagram is completed by symmetry WRT the origin. Figure 5 shows an 
enlargement of the vicinity of n. For L 3 4, the domain of existence of the pure phase 
( L )  is a triangle defined by its vertices P ( L ’ ,  P L + ’ ) ,  PL+’)  . Conversely, P ( L ’  is the 
coexistence point of three consecutive phases ( L ) ,  ( L  - I ) ,  ( L  - 2 ) .  Its coordinates are 
(Lz-4)  
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1-1 I (-1) I 

(-1 I I 

..... I l l  ( 5 )  11 I 

Figure 3. Flow chart of the iterative solution of (15) .  A new pure phase arises at each 
step of the recursion. 

Among the six unbounded phases, (2), (-2), (3), (-3) have very simple shapes, while 
the boundaries of the totally ordered phases (1) and (-1) are made of an infinity of 
segments, including Ra’. The equation of this last line is 6= 0, where 

6= T - l h c + T - 2 h S  (26) 

Let us now characterise the physical properties of this infinity of pure phases. Their 
is the averaged applied field. 

zero-temperature magnetisation, given by (19), becomes 

M r ’  = 2 FL( FL- - 7 - l  FL) - ( - 1 ) ‘. (27) 
It is constant in each of the phases, which is characterised by a specific ordering of 
the spins at zero temperature. For the first five values of L, we have been able to 
determine this ordering by inspection, since it coincides with the one of the model 
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I I 

\ 

7 c  

(-1) 

-1L 

R ,I 
- 2  

Figure 4. Zero-temperature phase diagram in the (hs;  h,)  plane, showing the domains of 
existence of the phases (L) and ( - L ) ( L e 5 )  and their accumulation points R,R'. 

I 

-0.d 

! 
-0.9 i 

-1.11 1 I I I 

1 1  1.2 1 3  1 4  1 5  1 6  
hs 

Figure 5. Enlargment of figure 4 around the accumulation point R, showing the domains 
of existence of the first nine pure phases. 

Table 1. Spin orientations and total magnetisation of the first five pure phases (L), showing 
the larger and larger size of ordered clusters. 

Phase 

W s c s  c c s  c s c c s  C C " '  Magnetisation MO 

Spin orientations at zero temperature 
- 

1 + + + + + + + + + + + + + . . *  1 
2 + - + - - + - + - - +  - - . . .  1 - 2T-I = -0.236 07 
3 + + + - - + + + - - +  - - . . .  5 - 8 ~ - ' =  0.055 73 
4 + + + - - + + +  - - - - - .  . .  1 1 - 1 8 ~ - ' = - 0 . 1 2 4 6 1  
5 + + + + + + + + - - - - - ' . .  31 - 5 0 ~ - ' =  0.098 30 
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defined by the approximant eL (see ( 3 ) )  for the same values of the magnetic fields. 
We present these results in table 1, together with the associated values of the zero- 
temperature magnetisation MAL’. I t  is remarkable that the sequence of values Mr’ 
does not go to zero, but approaches a simple oscillating law 

MAL’ L-m - (-1)L-’(1-2/Js) (28) 

with 1 -2/v‘3= 0.105 57, while the averaged applied field 6 (see (26)) goes uniformly 
to zero on the domain of existence of phase ( L )  as L gets large. 

It can be shown recursively that the zero-temperature spin orientations in phase 
( L )  are deduced from those in phase ( L  - 1) by flipping the smallest clusters of up (or 
down) spins. These smallest clusters are indeed the most fragile ones. The order 
parameter (succession of spin orientations) hence develops some structure at larger 
and larger length scales: the largest ordered cluster appearing in phase (L) has indeed 
length FL+,.  

The boundaries between any two phases are first-order transition lines (the magneti- 
sation is indeed discontinuous). The zero-point entropy vanishes inside each pure 
phase, since the spin configurations listed in the table are the unique ground states of 
the phases. Along the transition lines, the entropy is non-trivial, since at least the two 
ground states of the adjacent phases become degenerate. 

The existence of modulation in the order parameter at an arbitrarily large length 
scale is certainly one of the most spectacular physical properties induced by the 
geometry of quasicrystals. It would be very interesting to find evidences that analogous 
modulated phases survive at finite temperature in two- or three-dimensional magnetic 
quasicrystals. 
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Nore added. After completion of the present work, the author became aware o f  a recent article by Achiam 
er a1 [ 141, which also concerns the k ing  model on a one-dimensional quasiperiodic structure. The emphasis 
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We focus our attention on the effects offrusrrarion on the complexity of the zero-temperature phase diagram 
and on the structure of the ground states. 
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